

Recent Results with the GFDL High-Resolution Coupled Modeling Systems

Gabriel Vecchi¹, Tom Delworth¹, Takeshi Doi³, Isaac Held¹, Daehyun Kim², Hyeong-Seog Kim¹, Ian Lloyd³, Tony Rosati¹, Bill Stern¹, Ming Zhao¹

- I. GFDL/NOAA, Princeton, NJ, USA
- 2. AOS Princeton U., Princeton, NJ, USA
 - 3. LDEO, Columbia U., NY USA

Delworth, T.L., A. Rosati, W. Anderson, A. Adcroft, V. Balaji, R. Benson, K. Dixon, S.M. Griffies, H.-C. Lee, R.C. Pacanowski, G.A. Vecchi, A.T. Wittenberg, F. Zeng, R. Zhang (2012): Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. *J. Clim. (in press)*

High Resolution Model Development

Scientific Goals:

- Developing improved models (higher resolution, improved physics, reduced bias) for studies of variability and predictability on intra-seasonal to decadal time scales
- Explore impact of atmosphere and ocean on climate variability and change using a high resolution coupled models
- New global coupled models: CM2.4, CM2.5, CM2.6

	Ocean	Atmos	Computer	Status
CM2.1	100 Km	250 Km	GFDL	Running
CM2.3	100 Km	100 Km	GFDL	Running
CM2.4	10-25 Km	100 Km	GFDL	Running
CM2.5	10-25 Km	50 Km	GAEA/GFDL	Running
CM2.6	4-10 Km	50 Km	GAEA	Running

Coupling on Oceanic Mesoscale in Western Arabian Sea

Resolution enhancement allows model to better represent processes

Some Aspects of Tropical Climate Improve with Resolution

Annual Tropical Precipitation on 2.5x2.5 Grid

Adapted from Delworth et al (2012)

Some Aspects of Tropical Climate Improve with Resolution Near-equatorial Zonal Winds

Adapted from Delworth et al (2012)

Some Aspects of Tropical Climate Improve With Resolution Structure of tropical SST variability

Delworth et al (2012)

South Asian Monsoon Rainfall Improves with Resolution

Delworth et al (2012)

Enhanced Resolution and Coupling Improve Asian Monsoon Rainfall

Intraseasonal Variability

Daehyun Kim (LDEO, Columbia U.) and Bill Stern (GFDL)

- Physics
- Resolution
- Coupling

MJO improvement from one can depend on the others.

Coupling appears to improve GFDL high-res model's MJO

Impact of Physics: AM2.1 vs. HiRAM

Impact of coupling: HiRAM C180 AGCM vs. Coupled

Response to 2xCO₂

- Global-scale response (with a few exceptions) similar between high and low resolution models
 - High resolution model has higher climate sensitivity and warms more quickly.
 - Southern Ocean warms robustly in high-res model, but not in low-res model
- Regional rainfall response can differ considerably
- Must understand sources of difference in order to judge relative plausibility.

Higher-res does not necessarily mean "better".

Indian Ocean 1950-2000 SLP changes in an SST-forced AGCM differ from observed changes

GFDL-CM2.1 CGCM shows an SLP increase over this period when forced with radiative forcing...but different model.

Global Surface Temperature Response to 2xCO2

Global Surface Temperature Response to 2xCO2

Global Zonal-mean Response to 2xCO2

Equatorial Zonal Wind Response to 2xCO2

Equatorial winds weaken in both models.

Location of weakening in Pacific different.

South Asian Monsoon Rainfall Improves with Resolution

Delworth et al (2012)

South Asian Monsoon Response to 2xCO2

Response model dependent, hi-res model shows orographically-tied features

Why is response different?

Figures: Takeshi Doi

Tropical Cyclones in CM2.5 Observed Cyclone Density (1970-2008) GFDL-CM2.5 Cyclone Density (Yrs. 31-100) 60°N 40°N 20°N 0°N 20°S 40°S 60°S 100°E 100°E 60°W 160°W 60°W 160°W Cyclone Density: Gale-force 00 77 22 33 8 days per Year per 5°x5° gridcell GFDL-CM2.5 Cyclone Density 60°N 40°N 20°N 0°N

Figures: Hyeong-Seog Kim

60°N

40°N

20°N

0°N

20°S

40°S

60°S

Mean

Kim et al. (2012, in prep.)

Tropical Cyclone Response to CO₂ in CM2.5

Summary

- · New high-resolution coupled climate models being developed and run at GFDL.
- Enhanced resolution important both to resolve phenomena/features (cyclones, orography), and to resolve processes (eddies, etc).
- Some aspects of tropical climate improve from increasing resolution: tropical precipitation, near-equatorial winds, structure of interannual SST variability, monsoon rainfall.
- Some aspects of large-scale response to CO2 similar in climate models with very different resolution, but others differ: in hi-res model climate sensitivity larger, southern hemisphere warming stronger, more eastern equatorial Pacific warming, weakened equatorial Pacific easterlies more to the east.
- Regional precipitation response to increased CO2 can differ fundamentally between models of differing resolution. High-res model shows orographically-tied features: what are mechanisms for various differences?
- Why do models differ? Is one of the responses more plausible?
 Higher resolution does not necessarily mean a "better" model/response.